
Agile principles and ethical conduct

Ken H. Judy
Simon and Schuster
kjudy@computer.org

Abstract

Software practitioners experience pressure to
compromise their work and their reasonable care for
others. Even as software becomes more beneficial,
pervasive, and interconnected, the potential for
unintended harm grows. Agile Software Development
is an approach to building software systems that
embodies a set of declared core principles. How do
these principles align to an ethical standard of
conduct? This paper attempts from an Agile
Practitioner’s perspective to compare and contrast
Agile Principles with other approaches to Software
Ethics. It identifies areas of strong resonance and gaps
that exist between the stated Agile Principles and an
explicit software code of ethical conduct.

1. The potential for harm and for benefit

Figure 1: Economist Cover, September 2007
As our identities and activities become wed to

software systems, developers have begun to affect our
lives in ways and to degrees we hadn’t anticipated.

“In the discreet world of computing, there is no
meaningful metric in which small change and small
effects go hand in hand.” - (Dijkstra 1989. p. 1400) …
the normally predictable linkage between acts and their
effects is severely skewed by the infusion of
computing technology.” [1]

This is due in part to miniaturization, global
interconnectivity and commoditization. More and more
people have access to devices with more and more
computational power.

“Thus while [integrated circuits] are a primary
driver of complexity in modern day objects, they also
enable the ability to shrink a frighteningly complex
machine to the size of a cute little gum-drop… There is
no turning back to the age when large objects were
complex and small objects were simple.” [2]

These underlying advances spur evolution in the
software industry with new languages and frameworks
and lower thresholds to creating complex systems. The
worldwide software developer population is expected
to grow to 19.5 million by 2010 from 14.5 million in
2007. [3]

The growing influence of software in our society is
also driven by our transition from an industrial to a
service economy. According to the US State
Department, in 2006 67.8% of US GDP came from the
services sector. The US maintains a $79.8B trade
surplus in services while carrying an $800B trade
deficit in manufactured goods. [4]

So, as providing services through machine
interfaces has become more achievable, our lives and
our livelihoods have increasingly begun to revolve
around those services.

Figure 2. Identity on a Mobile Device
This pervasiveness leads to indirect chains of cause

and effect among systems. Dependencies may be

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

Judy, K.H.; , "Agile Principles and Ethical Conduct," System Sciences, 2009. HICSS '09. 42nd Hawaii International Conference on ,
vol., no., pp.1-8, 5-8 Jan. 2009 doi: 10.1109/HICSS.2009.53 © IEEE 2009

intrinsic such as the linking of a retail shopping
account to a credit card. Dependencies may be
accidental. Credentials revealed on an entertainment
website may unlock a bank account on another site.

“The cause of many such surprises seems clear: The
systems involved are complex, involving interaction
among and feedback between many parts. Any changes
to such a system will cascade in ways that are difficult
to predict; this is especially true when human actions
are involved.” [5]

This creates opportunity for criminality by software
developers and others who exploit software systems.

11/9/2007 LOS ANGELES (Reuters) - “A Los
Angeles man on Friday admitted infecting 250,000
computers and stealing the identities of thousands of
people by wiretapping their communications and
accessing their bank accounts.” [6]

“In 2006, 36% of all complaints to the FTC were
related to identity theft (246K incidents) another 11%
to other online activities.” [7]

It also creates the potential for unintended harm by
well-intentioned software practitioners.

“Every week hundreds of vulnerabilities are being
reported in web applications, and are being actively
exploited. The number of attempted attacks every day
for some of the large web hosting farms range from
hundreds of thousands to even millions.” - SANS
Institute [8]

“Software bugs, or errors, are so prevalent and so
detrimental that they cost the U.S. economy an
estimated $59.5 billion annually, or about 0.6 percent
of the gross domestic product” - 2002 NIST Study [9]

“The Information and Communications Technology
sector accounts for nearly 2% of global greenhouse gas
emissions, and that data centres account for 23% of the
direct footprint of the sector.” -- Gartner [10]

Figure 3. Data Center
In technology, size is no longer a predictable

measure of consequence. Small contains great
expressive power. Not only small tools but mundane
and seemingly insignificant decisions about their
implementation can have tremendous consequences.

Software developers ought to be concerned with
people and the world around them. As human beings,
they should be determined to do more good in their
lives than harm. Software developers need to consider
the potential consequences of day to day decisions.
This consideration is the domain of software ethics.

2. Agile software development

Agile software development encompasses several
software project management and execution
methodologies which evolved largely independently
over the last twenty years. The originators and other
advocates of these methodologies self-identify their
practices as “agile” and are loosely associated through
member organizations such as the Agile Alliance.

Agile software development incorporates a wide
range of influences from pre-existing iterative and
evolutionary development methodologies, empirical
process control, games theory, lean product
development, and learning gleaned from highly
productive software development teams.

Some prominent Agile methodologies include:
Adaptive Software Development ASD (Jim

Highsmith) - incorporates experience in RAD and the
fundamental view of software development groups as
complex adaptive systems. [11]

Crystal (Alistair Cockburn) - an array of
approaches that add ceremony as criticality or scale
increases. Emphasizes development as a cooperative
game. [12]

Extreme Programming XP (Kent Beck, Ward
Cunningham, Ron Jeffries) - primarily a set of
mutually supporting coding practices based on direct
experience with the first XP team at DaimlerChrysler.
[site] [13]

Lean Software Development (Mary and Tom
Poppendieck) - applies lean principles from the Toyota
product system to software development. [14]

Scrum (Ken Schwaber, Jeff Sutherland, Mike
Beedle) - a management and control process influenced
by academic research on Japanese product
development and empirical process control.[15]

3. Agile software development and the
mushy stuff of values and culture

“We are uncovering better ways of developing
software by doing it and helping others do it. Through
this work we have come to value: Individuals and
interactions over processes and tools. Working
software over comprehensive documentation.
Customer collaboration over contract negotiation.
Responding to change over following a plan.” [16]

What the originators of Agile practices held in
common was a set of values they jointly published as

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

Judy, K.H.; , "Agile Principles and Ethical Conduct," System Sciences, 2009. HICSS '09. 42nd Hawaii International Conference on ,
vol., no., pp.1-8, 5-8 Jan. 2009 doi: 10.1109/HICSS.2009.53 © IEEE 2009

the Manifesto for Agile Software Development. The
manifesto consists of a preamble and a list of twelve
principles.

Figure 4: An agile development team
“At the core, I believe Agile Methodologists are

really about ‘mushy’ stuff about delivering good
products to customers by operating in an environment
that does more than talk about ‘people as our most
important asset’ but actually ‘acts’ as if people were the
most important, and lose the word ‘asset’. So in the
final analysis, the meteoric rise of interest in and
somet imes t r emendous c r i t i c i sm o f Ag i l e
Methodologies is about the mushy stuff of values and
culture.” -- Jim Highsmith [17]

4. The principles behind the Agile
Manifesto[18]

Our highest priority is to satisfy the customer
through early and continuous delivery of valuable
software.

Welcome changing requirements, even late in
development. Agile processes harness change for the
customer's competitive advantage.

Deliver working software frequently, from a couple
of weeks to a couple of months, with a preference to
the shorter timescale.

Business people and developers must work together
daily throughout the project.

Build projects around motivated individuals. Give
them the environment and support they need, and trust
them to get the job done.

The most efficient and effective method of
conveying information to and within a development
team is face-to-face conversation.

Working software is the primary measure of
progress.

Agile processes promote sustainable development.
The sponsors, developers, and users should be able to
maintain a constant pace indefinitely.

Continuous attention to technical excellence and
good design enhances agility.

Simplicity--the art of maximizing the amount of
work not done--is essential.

The best architectures, requirements, and designs
emerge from self-organizing teams.

At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts its
behavior accordingly.

5. Existing approaches to software ethics

Before discussing how Agile principles inform
ethical decision making, it would be valuable to briefly
review other systems of ethical thought in software. In
particular, the craft model and the engineering
approach to software ethics.

5.1. The craft guild and reputation

Advocates of the craft model of software
development believe efficacy and quality arise from
mastery and that the primary mode of learning is hands
on supervised practice.

“What matters is that the people working in
software development be skilled practitioners of their
craft and that they are continually working to hone and
improve their skills.” [19]

Under a craft system, learning is transferred hands
on as one ascends through mentorship and experience
from apprentice to journeyman to master craftsperson.

For this model to exist in the typical software
organization, radical changes need to occur in the
industry. For example, the economics would have to
change. Developers with few years of experience, i.e.
apprentices, would need to be paid significantly less so
that there would be fewer novices entering the field.
This would create more appropriate ratios to allow
mentoring from journeymen developers.

Experience would need to garner greater respect in
the workplace. Developers with a decade or more of
experience and mastery of craft would need to be
retained in greater numbers. They would have to be
paid significantly more and would need the authority
required to build craft shops around themselves.
Software suppliers would need to be selected for work
based on personal recommendations and the
reputations of the master craftspeople who head them.

If such changes were pervasive, the impetus for
ethical action would fall on the need to protect one’s
reputation. “Peer recognition and recommendations are
the route to better software. When one developer
recommends another, he is putting his own reputation
on the line.” [20]

The problem with using the craft model as a guide
for ethical behavior is that while reputation can be a
strong incentive for personal standards it does not in

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

Judy, K.H.; , "Agile Principles and Ethical Conduct," System Sciences, 2009. HICSS '09. 42nd Hawaii International Conference on ,
vol., no., pp.1-8, 5-8 Jan. 2009 doi: 10.1109/HICSS.2009.53 © IEEE 2009

and of itself inform what those standards should be nor
does it expand the area of concern to broader
stakeholders who, while affected by a developer’s
decisions, are in no position to assign blame or affect
reputation.

5.2. Plan-driven software ethics

A more systematic approach to addressing the moral
dimensions of a practice is to professionalize. In the
mid-nineteenth century, partly in response to the
catastrophic failures of iron railway bridges,
engineering “began to apply the scientific method to
structural problems, it moved away from purely
aesthetic considerations and separated itself from
architecture” [21]

Thus began what Samual Florman calls “the golden
age of engineering”.

“Before 1850 there had been fine engineers and
many outstanding engineering works. But engineering
itself had been rather a craft than a profession, relying
more on common sense and time-honored experience
than on the application of scientific principles, and
lacking those essentials of true professionalism --
professional schools and professional societies.” [22]

In fact many advocates of this approach consider
software development an emerging engineering
profession. However, this question can be taken
separately from a consideration of software
development as profession.

A profession has requirements for learning and
training, a code of ethics imposing higher standards
than normally tolerated in the marketplace, a
disciplinary system for those breaching the code, a
primary emphasis on social responsibility, and
licensing. [23]

A code of ethics “should instruct practitioners about
the standards society expects them to meet, about what
their peers should strive for, and about what to expect
of one another. In addition, the code should also inform
the public about the responsibilities that are important
to the profession” [24]

Enforcing a code of ethics can serve and protect the
public, provide guidance and inspiration, help
practitioners arrive at shared standards, provide moral
support and external validation for courageous
decisions, educate and engender mutual understanding,
provide deterrence and discipline and contribute to a
discipline’s image in the larger society. [25]

Software development has many existing codes of
ethics. The IEEE has “The Software Engineering Code
of Ethics and Professional Practice”. The ACM has a
“Code of Ethics and Professional Conduct”. The
British Computer Society has a “Society Code of
Conduct”. The Australian Computer Society has a
“Code of Ethics”.

At their best, codes of ethics introduce
consideration for a broad set of stakeholders some of
whom are present in the software development
lifecycle: ourselves, co-workers, customers and
employers. A code of ethics also advocates for
stakeholders who are rarely present in day to day
decisions: peers in the industry, end users, the
reputation of software developers in society, the
general public, and systems affected by the aggregate
results of our industry such as the global environment.

Codes of ethics also delineate possible dilemmas a
practitioner might encounter such as informed consent,
safety and welfare, data integrity and representation,
trade secrets , bribery, conflict of interest ,
accountability, and fairness. [26]

Consideration of these additional factors does set a
“higher standard than normally tolerated in the
marketplace.”

However, codes of ethics are in the end only
artifacts. Like all other attempts to codify essential
complexity they are in danger “abstracting away the
essence of the problem”.

One danger is that a code of ethics will over-
prescribe the software development lifecycle. For
example, requiring upfront completeness in software
design and specification.

“Software engineers shall commit themselves to
making the analysis , specification, design,
development, testing, and maintenance of software a
…respected profession. Software engineers shall
approve software only if they have a well-founded
belief that it… meets specifications…” [27]

As methodologies for software development
continue to evolve, such language may quickly become
archaic or controversial.

Another danger is that while no document can
capture the circumstances of even a small set of
specific ethical dilemmas, a formally recognized and
incomplete code lends itself to abuse and can be used
to actually justify unethical action.

“Whatever the background, individuals may well be
aware that acts they are about to perform do not meet
the standards that society will consider to be
appropriate for moral behavior. An individual my
nonetheless, feel impelled to act in the way that society
will judge immoral by the more immediate pressures...
In such circumstances, finding what looks like a moral
code that does not condemn, the course of action in
question can come as a great relief.” [28]

Therefore, a code of ethics for software
development must acknowledge it’s incompleteness. It
must serve as a reminder of an ongoing conversation
within the software development community and with
our broad set of stakeholders. It must be a living
document evolving to address changes in our field.

The agile approach to documentation is to think of it
as “a reminder to have a conversation with

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

Judy, K.H.; , "Agile Principles and Ethical Conduct," System Sciences, 2009. HICSS '09. 42nd Hawaii International Conference on ,
vol., no., pp.1-8, 5-8 Jan. 2009 doi: 10.1109/HICSS.2009.53 © IEEE 2009

stakeholders” [29]. A written code can help remind
practitioners to encompass a larger set of concerns but
it is participating in an ongoing conversation among
their peers, with ethicists, and with those affected by
software that will help developers address the specific
day to day dilemmas of software ethics.

6. Ethical gaps in the agile worldview

The IEEE Computer Society and Association for
Computing Machinery Software Engineering Code of
Ethics and Professional Practice identifies eight areas
of concern: the public, the client and employer, the
product, judgement, management, profession,
colleagues, and self. Within each of those areas they
identify 5-15 detailed principles. These areas of
concern represent the IEEE-CS and ACM’s attempt to
capture the full range of software engineering ethical
concerns.

The Agile Manifesto consists of three four values
which are embodied in twelve principles. A
comparison between these twelve Agile principles and
the IEEE-CS/ACM eight areas of ethical concern
suggests gaps and overlaps between these two ethical
world views.

This, of course, does not imply that the original
authors or current practitioners of Agile Software
Development lack these values but simply that the
original authors chose not to express them as part of
their shared agenda.

However, as documentation is a reminder to have a
conversation with stakeholders, gaps in the Agile
principles suggest stakeholders who may be under-
served, or at least, under-represented in the literature,
discourse and practice of Agile Software Development.

As a concession to dissensus between the drafters of
both documents, requirements for documentation
artifacts are omitted. This is because consideration of
the value of artifacts is redundant to the vast majority
of Agile literature and is beyond the scope of this
paper.

The first table focuses on how the stated Agile
Principles shore up an ethical world-view. It is
organized around the IEEE-CS/ACM’s eight areas of
concern. The second column lists which of the twelve
Agile principles directly benefit that area of concern.

Table 1. Areas of Concern/Agile Principles
IEEE-CS/ACM

Area of
Concern

Supporting
Agile Manifesto

Principle

Public

Client/Employer continuous delivery
welcome changing requirements
working software
work together

Product continuous delivery
welcome changing requirements
working software
technical excellence
simplicity

Judgement technical excellence
simplicity
self-organizing teams
reflection

Management work together
motivated individuals
face-to-face conversation
sustainable development
self-organizing teams
reflection

Profession sustainable development
technical excellence
self-organizing teams
reflection

Colleagues work together
motivated individuals
face-to-face conversation
sustainable development
self-organizing teams
reflection

Self sustainable development
technical excellence
self-organizing teams
reflection

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

Judy, K.H.; , "Agile Principles and Ethical Conduct," System Sciences, 2009. HICSS '09. 42nd Hawaii International Conference on ,
vol., no., pp.1-8, 5-8 Jan. 2009 doi: 10.1109/HICSS.2009.53 © IEEE 2009

The second table focuses on ethical gaps in the
Agile world-view as contained in the Agile Manifesto.
This table is also organized around the IEEE-CS/
ACM’s eight areas of concern. The second column
focuses on the detailed principles the IEEE-CS/ACM.
In particular, which of these detailed principles have no
direct analog in the twelve principles of the Agile
Manifesto.

Table 2. Gaps in Stated Agile principles
IEEE-CS/ACM Agile Manifesto

Public Protect the public good.

Disclose potential danger to the
user, the public, or the
environment

Consider issues of physical
disabilities, allocation of
resources, economic
disadvantage and other factors
that can diminish access to the
benefits of software.

Volunteer

Client/Employer

Product

Judgement Temper all technical judgments
with human values.

Do not abet conflicts of interest.

Management

Profession Avoid associations with unethical
businesses and organizations

Report significant ethical
violations

Colleagues Encourage colleagues to adhere
to ethical conduct.

Self Improve their knowledge of
relevant standards and the law

Avoid prejudice

7. Agile principles are a compelling but
incomplete set of ethical concerns

The Agile Principles represent a commitment to
delivering business value, software quality, honesty,
introspection, continuous improvement, humane work
environments, empowered workers and customer
collaboration.

Their strength is with regard to behaviors the
provide direct value to the customer, a sustainable
pace, and team and individual excellence..

Agile Principles are silent on the responsibility of
the software developer to the general well-being. This
includes both things developer should avoid such as
participating in actions that benefit customers and
employers but potentially harm un-empowered and
distant stakeholders. It also omits things developers
should do such as volunteering, encouraging fair
distribution of computing resources, and being aware
of developers standing in law.

Finally, Agile Principles don’t consider software
developer’s responsibility for the conduct of software
developers outside their immediate collaborative team.

8. Expanding agile practice to consider
broader ethical concerns

The author of this paper has no clear formula for
leveraging agile practices to build higher standards of
conduct in software development organizations.

However, several courses of action and further
investigation should be pursued.

• Research should be done on ethical dilemmas
specific to Agile Software Development and on the
contribution of Agile to ethical software development.

• Thought leaders in the agile community should
begin to discuss Agile values and principles as ethics.

• Thought leaders in the agile community should
acquire a more sophisticated understanding of the
current investigations and theories of ethics and
psychological and cognitive aspects of moral thinking.

• Professional literature and active online
community should expand the range of concerns to
encompass more than business value, efficacy, and
quality and should explicitly include obligations to end
users, to society, and to the field of software
development.

• The agile community should take more
responsibility for the actions of peers and champion
examples of ethical behavior and censure examples of
unethical behavior in our midst.

• Agile practitioners should engage in a
conversation with ethicists in the larger software
development industry, in engineering and in academia.
Agile should continue the tradition of learning

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

Judy, K.H.; , "Agile Principles and Ethical Conduct," System Sciences, 2009. HICSS '09. 42nd Hawaii International Conference on ,
vol., no., pp.1-8, 5-8 Jan. 2009 doi: 10.1109/HICSS.2009.53 © IEEE 2009

practices from other industries. Agile should also
receive attention and credit for the contribution it is
making to ethical, principled software development.

• Agile practitioners with assistance from the larger
software development and academic communities
should adapt existing forums, techniques and language
to safely discuss ongoing and real ethical dilemmas in
a way that does not violate employee agreements or
unnecessarily endanger job security.

• Agile training curricula should include a survey of
ethical concerns such as informed consent. To be agile
should mean to be an informed an ethical practitioner.

• Agile practitioners should apply existing agile
practices of retrospection, user-centered design,
participation of stakeholders to elicit broader ethical
implications of decisions and projects in the field and
document and share learning through experience
reports.

9. Conclusion

“We, the members of the IEEE, in recognition of the
importance of our technologies in affecting the quality
of life throughout the world, and in accepting a
personal obligation to our profession, its members and
the communities we serve, do hereby commit ourselves
to the highest ethical and professional conduct” [30]

We, software practitioners experience pressure to
compromise our work and our reasonable care for
others.

At the same time, the economy has become more
and more bound to services delivered through software
interfaces. Software systems are proliferating.
Complexity is increasing. Inter-dependancy is
increasing. People’s reliance on software systems is
increasing.

As software becomes more beneficial, more
pervasive, and interconnected, our potential to harm
grows.

Agile practices are designed to navigate essential
complexity. Their growing rate of adoption is based
upon a founding set of ethical concerns, “The mushy
stuff of values and culture.” The agile community itself
provides a vital resource of seasoned peers with shared
values.

By their very nature, agile practices founded within
a set of ethical principles makes a contribution to
conduct in our field. This despite Agile Principles
providing an incomplete ethical system. The
conversation on ethical dilemmas is largely absent
from an Agile context where they do not directly affect
business value or teams.

Nonetheless, by expanding the scope to encompass
a broader range of ethical concerns, applying relevant
Agile practices, and engaging peers in honest
retrospection Agile can do more to educated developers
of the highest ethical conduct.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

Judy, K.H.; , "Agile Principles and Ethical Conduct," System Sciences, 2009. HICSS '09. 42nd Hawaii International Conference on ,
vol., no., pp.1-8, 5-8 Jan. 2009 doi: 10.1109/HICSS.2009.53 © IEEE 2009

10. References

[1] Maner, W., “Unique Ethical Problems in Information
Technology”, Science and Engineering Ethics, 2:2, April
1996, pp. 137-54.

[2] Maeda, J., The Laws of Simplicity, The MIT Press,
Cambridge, 2006.

[3] InfoWorld, “Software developer growth slows in North
America”, [online] [cited June 6, 2008] http:/ /
www.infoworld.com/article/07/03/13/HNslowsoftdev_1.html

[4] U.S. Department of State's Bureau of International
Information Programs, “USA Economy in Brief”, [online]
[cited June 6, 2008] http://usinfo.state.gov/products/pubs/
economy-in-brief/page3.html

[5] Joy, B., “Why the future doesn’t need us”, Wired, June
2006.

[6] “Los Angeles man admits to infecting 250,000
computers”, Reuters, November 9, 2007.

[7] Anonymous, Identify Theft Victim Complaint Data
January 1 - December 31, 2006, Federal Trade Commission,
Washington D.C., Feb. 2007.

[8] SANS, “SANS Top-20 2007 Security Risks (2007 Annual
Update)”, [online] [cited November 11, 2007], http://
www.sans.org/top20/#c1.

[9] NIST, “The Economic Impacts of Inadequate
Infrastructure for Software Testing”, [online] [cited
November 11, 2007], http://www.nist.gov/public_affairs/
releases/n02-10.htm

[10] Gartner, “Gartner Estimates ICT Industry Accounts for 2
Percent of Global CO2 Emissions”, [online] [cited November
11, 2007], http://www.gartner.com/it/page.jsp?id=503867

[11] Highsmith, J., Adaptive Software Development, Dorset
House Publishing, New York, 1999.

[12] Cockburn A., Crystal Clear: A Human-Powered
Methodology for Small Teams, Addison-Wesley, Boston,
2005.

[13] Beck, K., Extreme Programming Explained: Embrace
Change, Addison-Wesley, Boston, 2005.

[14] Poppendieck, M., and T. Poppendieck, Lean Software
Development: An Agile Toolkit, Addison-Wesley, Boston,
2003.

[15] Schwaber, K., and M. Beedle, Agile Software
Development with Scrum, Prentice Hall, Upper Saddle River,
NJ, 2002.

[16] Beck, K., Beedle, M., et, al.,. Principles Behind the
Agile Manifesto. [Online] [Cited: June 6, 2007] http://
agilemanifesto.org/principles.html.

[17] Highsmith, J., History: The Agile Manifesto. [Online]
[Cited: June 6, 2007] http://agilemanifesto.org/history.html.

[18] Beck, K., Beedle, M., et, al.,. Principles Behind the
Agile Manifesto. [Online] [Cited: June 6, 2007] http://
agilemanifesto.org/principles.html.

[19] McBreen, P., Software Craftsmanship, Addison-Wesley,
Boston, 2002.

[20] ibid.

[21] Petroski, H., To Engineer is Human, Vintage, New York,
1992, pg 62.

[22] Florman, S., The Existential Pleasures of Engineering,
St. Martins Press, New York, 1994, pg 6.

[23] McConnell, S., Professional Software Development:
Shorter Schedules, Better Projects, Superior Products,
Enhanced Careers, Addison-Wesley, Boston, 2004.

[24] Software Engineering Code of Ethics and Professional
Conduct, Institute of Electrical and Electronic Engineers, Inc
and The Association of Computing Machinery, 1999.

[25] Martin, M. and Schinzinger, R., Ethics in Engineering,
McGraw Hill, Boston, 2005, pg 8.

[26] Baura, G. Engineering Ethics: An Industrial
Perspective, Elsevier Academic Press, Burlington VT, 2006.

[27] Software Engineering Code of Ethics and Professional
Conduct, Institute of Electrical and Electronic Engineers, Inc.
and The Association of Computing Machinery, 1999.

[28] Fairweather, N., “No PAPA: Why Incomplete Codes of
Ethics are Worse than None at All”, Ethics in the Age of
Information Technology, Linkoping University Press, 2000.

[29] Ambler, S., Usable UIs, Dr. Dobbs Journal, February 1,
2005.

[30] Software Engineering Code of Ethics and Professional
Conduct, Institute of Electrical and Electronic Engineers, Inc
and The Association of Computing Machinery, 1999.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

Judy, K.H.; , "Agile Principles and Ethical Conduct," System Sciences, 2009. HICSS '09. 42nd Hawaii International Conference on ,
vol., no., pp.1-8, 5-8 Jan. 2009 doi: 10.1109/HICSS.2009.53 © IEEE 2009

